OVERVIEW OF THE COMMON CORE MATHEMATICS CURRICULUM MAP

Introduction to the Document:

Welcome to the Los Angeles Unified School District's Common Core Mathematics Curriculum Map. The mathematics curriculum map for Los Angeles Unified School District is developed as a tool for direction and clarification. It is a living document that is interactive and web-based. There are specific, precise links to provide readily accessible resources needed to appropriately meet the rigors of the common core state standards. The curriculum map is intended to be a one-stop tool for teachers, administrators, parents, and other school support personnel. It provides information on the Common Core Standards for Mathematics, assessment sample items, and suggested instructional tools organized into units providing one easy-to-read resource.

Components of the Mathematics Curriculum Map:

The curriculum map is designed around the standards for mathematics k - 12 which are divided into two sets: Practice Standards and Content standards. The Standards for Mathematical Practice are identical for each grade level. They are the expertise and understanding which the mathematics educators will seek to develop in their students. These practices are also the "processes and proficiencies" to be used as instructional "habits of mind" to be developed at all grade levels. It is critical that mathematical literacy is emphasized throughout the instructional process.

The Mathematics Curriculum Map for Algebra 1 is grouped into five coherent units by grade level. Each unit clarifies the cluster and specific standards students are to master. In addition, the relevant Mathematical Practices and learning progressions are correlated. These sections of the Mathematics Curriculum Map define the big idea of the unit. These five units are summarized in the **Unit Organizer** which provides the overview for the year.

Instructional components are specified in:

- Enduring Understandings which are the key understandings/big ideas that the students will learn from the unit of study. These are statements that communicate the learning in a way that engages students.
- **Essential Questions** which are based on enduring understandings. They are used to gain student interest in learning and are limited in number. They promote critical or abstract thinking and have the potential of more than one "right" answer. They are connected to targeted standards and are the framework and focus for the unit.
- **Standards**: Targeted (content and skills to be taught and assessed) and supporting (content that is relevant to the unit but may not be assessed; may include connections to other content areas). This includes what students have to know and be able to do (learning targets) in order to meet the standards.

Mathematical literacy is a critical part of the instructional process, which is addressed in:

• Key Vocabulary and Language Goals which clearly indicate strategies for meeting the needs of EL and SEL students.

Planning tools provided are:

- Instructional Strategies lead to enduring understandings. They are varied and rigorous instructional strategies to teach content. They are plan experiences that reinforce and enrich the unit while connecting with the standards and assessments. Instructional strategies addresses individual student needs, learner perspectives, integration of technology, learning styles, and multiple intelligences.
- Resources and Performance Tasks offer concept lessons, tasks, and additional activities for learning.
- **Assessments:** This is also a listing of formative and summative Assessments to guide backwards planning. Student progress in achieving targeted standards/expected learning is evaluated. Entry-level (formative)-based on summative expectations, determine starting points for learning. Benchmark-determine progress of learning, misconceptions, strengths/weaknesses along the learning trajectory.
- **Differentiation** (**L**) falls into three categories:
 - Universal Design for Learning (UDL) / Universal Access (the approach formerly referred to as Front Loading): strategies to make the content more accessible to all students, including EL, SEL, Students with Disabilities, and low-achieving students.
 - Acceleration: activities to extend the content for all learners, as all learners can have their thinking advanced, and to support the needs of GATE students. These are ideas to deepen the conceptual understanding for advanced learners.
 - **Intervention:** alternative methods of teaching the standards, in which all students can have a second opportunity to connect to the learning, based on their own learning style. They guide teachers to resources appropriate for students needing additional assistance

Using the Mathematics Curriculum Map:

The guide can be thought of as a menu. It cannot be expected that one would do every lesson and activity from the instructional resources provided. To try to teach every lesson or use every activity would be like ordering everything on a menu for a single meal. It is not a logical option. Nor is it possible given the number of instructional days and the quantity of resources. That is why the document is called a "*Mathematics Curriculum Map*" and not a "*Mathematics Pacing Plan*." And, like a menu, teachers select, based on instructional data, which lessons best fit the needs of their students – sometimes students need more time with a concept and at other times, less.

An effective way to use this guide is to review and assess mathematical concepts taught in previous grades to identify potential learning gaps. From there, teachers would map out how much time they feel is needed to teach the concepts within the unit based on the data of their students' needs. For example, some classes may need more time devoted to developing expressions and equations, while another class in the same course may need more focused time on understanding the concept of functions.

The starting point for instructional planning is the standards and how they will be assessed. By first considering how the standards will be assessed, teachers can better select the instructional resources that best build mathematical understanding. There are hundreds of resources available, both publisher- and teacher-created, as well as web-based, that may be used to best teach a concept or skill. Collaborative planning, both within and among courses, is strongly encouraged in order to design effective instructional programs for students.

Learning Progressions:

The Common Core State Standards in mathematics were built on progressions: narrative documents describing the progression of a topic across a number of grade levels, informed both by research on children's cognitive development and by the logical structure of mathematics. The progressions documents can explain why standards are sequenced the way they are, point out cognitive difficulties and pedagogical solutions, and give more detail on particularly knotty areas of the mathematics. This would be useful in teacher preparation and professional development, organizing curriculum, and writing textbooks.

Standards for Mathematical Practice:

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the National Council of Teachers of Mathematics (NCTM) process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report *Adding It Up*: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

The Mathematics Curriculum Map is a living document—it is neither set in stone for all time nor is it perfect. Teachers and other users are encouraged to provide on-going feedback as to its accuracy, usability, and content. Your participation in making this instructional guide a meaningful and useful tool for all is needed and appreciated.

he grade level Common Core State Standards-aligned Curriculum Maps of the courses in this 2014 edition of the CCSS *Mathematics Instructional Guide* are the result of the collective expertise of the LAUSD Secondary Mathematics Team.

The District extends its gratitude to the following Algebra1, Geometry, and Algebra 2 development team:

Elisa Rose, Andres Flores, Lisa Usher, Jane Berman, Reginald Brookens, Barbara Jacobs-Ledbetter, Susan Mussack, Jack Bloom, Kimberly Montsinger, Julia Keiper, Norma Grimaldo-Ramirez, Seng Fong, Kamau Mposi, Marla Mattenson, Leslie Hicks, Geoffrey Buck, Hendrick Hueck, Joel Tepper, Roxanne Klarin, Ralph Wilkinson, Oksana Pivnenko, Roslyn Lewis-Chambers, Travis Holden, Roslyn Lewis-Chambers, Diana Tabbara, Norma Alvarez, and Helen Choi.

This document was developed under the auspices of the Chief Academic Officer of the Office of Curriculum, Instruction and School Support, Gerard Loera. Particular gratitude is extended to Caroline Piangerelli, Lisa Ward, Laura Cervantes, and Philip Ogbuehi, who coordinated the 2015 edition initiative under the guidance of Angel Barrett, Executive Director of the K-12 Instruction.

Algebra 1

Unit 1

Relationships between Quantities and Reasoning with Equations

5

7

8

Algebra 1 – UNIT 1 Relationships between Quantities and Reasoning with Equations

Critical Area: By the end of eighth grade, students have learned to solve linear equations in one variable and have applied graphical and algebraic methods to analyze and solve systems of linear equations in two variables. This unit builds on these earlier experiences by asking students to analyze and explain the process of solving an equation. Students develop fluency writing, interpreting, and translating between various forms of linear equations and inequalities, and using them to solve problems. They master the solution of linear equations and apply related solution techniques and the laws of exponents to the creation and solution of simple exponential equations. All of this work is grounded on understanding quantities and on relationships between them.

CLUSTERS	CLUSTERS COMMON CORE STATE STANDARDS	
(m) Interpret the structure of expressions. Limit to linear expressions and to exponential expressions with integer exponents.	Algebra - Seeing Structure in Expressions A.SSE.1 Interpret expressions that represent a quantity in terms of its context. \bigstar a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as single entity. For example, interpret P(1+r)n as the product of P and a factor not depending on P.	
(m) Understand solving equations as a process of reasoning and explain the reasoning. Students should focus on and master A.REI.1 for linear equations and be able to extend and apply their reasoning to other types of equations in future courses.	Algebra - Reasoning with Equations and Inequalities A.REI.1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	
(m) Solve equations and inequalities in one variable. Extend earlier work with solving linear equations to solving linear inequalities in one variable and to solving literal equations that are linear in the variable being solved for. Include simple exponential equations that rely only on application of the laws of exponents, such as $5x = 125$ or $2x = \frac{1}{16}$.	A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.A.REI.3.1 Solve one-variable equations and inequalities involving absolute value, graphing the solutions and interpreting them in context. CA addition	
(s/a) Reason quantitatively and use units to solve problems. Working with quantities and the relationships between them provides grounding for work with expressions, equations, and functions.	 Numbers - Quantities N.Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. N.Q.2 Define appropriate quantities for the purpose of descriptive modeling. N.Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. 	

LAUSD Secondary Mathematics

June 23, 2015 Draft

CLUSTERS	COMMON CORE STATE STANDARDS			
(m) Create equations that describe numbers or relationships. Limit A.CED.1 and A.CED.2 to linear and exponential equations, and, in the case of exponential equations, limit to situations requiring evaluation of exponential functions at integer inputs. Limit A.CED.3 to linear equations and inequalities. Limit A.CED.4 to formulas which are linear in the variable of interest.	Algebra - Creating Equations A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. A.CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R			
MATHEMATICAL PRACTICES				
 Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics. Use appropriate tools strategically. Attend to precision. Look for and make use of structure. Look for and express regularity in repeated reasoning. 	As you begin the year, it is advised that you start with MP1 and MP 3 and MP4 to set up your expectations of your classroom. This will help you and your students become proficient in the use of these practices. All other practices may be evident based on tasks and classroom activities.			
LEARNING PROGRESSIONS				
CDE Progress to Algebra K-8 www.cde.ca.gov/be/cc/cd/documents/updateditem12catt3.doc				

(m) Major Clusters - area of intensive focus where students need fluent understanding and application of the core concepts.

(s)Supporting/Additional Clusters – designed to support and strengthen areas of major emphasis/expose students to other subjects.

★Indicates a modeling standard linking mathematics to everyday life, work, and decision-making.

(+) Indicates additional mathematics to prepare students for advanced courses.

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
LAUSD Adopted Textbooks and Programs	Start by directing students to understand written	Formative Assessment
 Big Ideas Learning - Houghton Mifflin Harcourt, 2015: Big Ideas Algebra I College Preparatory Mathematics, 2013: Core Connections, Algebra I The College Board, 2014:Springboard Algebra I Materials: California Revised Mathematics Framework: http://www.cde.ca.gov/be/cc/cd/draftmathfwcha pters.asp. Mathematics Assessment Project Formative Assessments/Tasks Solving Equations in One Variable: http://map.mathshell.org/materials/lesson 	sequence of steps for solving linear equations which is the code for a narrative line of reasoning that would use words like "if", "then", "for all" and "there exists." In the process of learning to solve equations, students should learn certain "if - then" moves: e.g. "if $x = y$ then $x + c = y + c$ for any c ." The first requirement in this domain (REI) is that students understand that solving equations is a process of reasoning (A.REI.1). Have students reason through problems with careful selection of units, and how to use units to understand problems and make sense of the answers they deduce.	 LAUSD Concept Lessons http://math.lausd.net/middle-school/algebra-1-concept-lessons Tommy's T-Shirts -Storage Tanks Surround the Pool -Calling Plan Stacking Cups Comparing Investments: http://map.mathshell.org/materials/lessons.php?task id=426&subpage=concept (A-SSE, F-LE)

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
<pre>s.php?taskid=442 (8.EE)</pre>	Example	LAUSD Assessments
• Sorting Equations and Identities:	As Felicia gets on the freeway to drive to her	The district will be using the SMARTER Balanced
http://map.mathshell.org/materials/lessons.p	cousin's house, she notices that she is a little low on	Interim Assessments. Teachers would use the
hp?taskid=218&subpage=concept	gas. There is a gas station at the exit she normally	Interim Assessment Blocks (IAB) to monitor the
(A-SSE, A-REI)	takes, and she wonders if she will have to get gas	progress of students. Each IAB can be given twice
Manipulating Polynomials:	before then. She normally sets her cruise control at	State Assessments
http://map.mathshell.org/materials/lessons.p	the speed limit of 70 mph and the freeway portion of	State Assessments
hp?taskid=437&subpage=concept	the drive takes about an hour and 15 minutes. Her	California will be administering the SMARTER
(A-SSE, A-APR)	car gets about 30 miles per gallon on the freeway,	Balance Assessment as the end of course for grades
• Defining Regions of Inequalities:	and gas costs \$3.50 per gallon.	3-8 and 11. There is no assessment for Algebra 1.
http://map.mathshell.org/materials/lesson	a. Describe an estimate that Felicia might do in her	The 11th grade assessment will include items from
<u>s.php?taskid=219&subpage=concept</u> (A-	head while driving to decide how many gallons	Algebra 1, Geometry, and Algebra 2 standards.
REI)	of gas she needs to make it to the gas station at	For examples, visit the SMARTER Balanced
• Interpreting Algebraic Expressions:	the other end.	Assessment at:
http://map.mathshell.org/materials/lesson	b. Assuming she makes it, how much does Felicia	SBAC - http://www.smarterbalanced.org/
<u>s.php?taskid=221&subpage=concept</u> (A-	spend per mile on the freeway?	~ <i></i>
SSE, A-APR)		
NCTM Books:	Students will create multiple ways to rewrite an	
Developing Essential Understanding for	expression that represents its equivalent form.	
Teaching Mathematics in Grades 9-12	algebraic tiles to establish a visual understanding of	
Implementing the Common Core State	algebraic expression and the meaning of terms, factors,	
Standards through Mathematical Problem	and coefficients.	
Solving: High School		
NCTM Illuminations		
• Pan Balance – Expressions:		
http://illuminations.nctm.org/ActivityDetail.a		
spx?id=10		
• Exploring Equations:		
http://illuminations.nctm.org/LessonDetail.as		
px?ID=L746		
• Algebra tiles:		
http://illuminations.nctm.org/ActivityDetail.a		
spx?ID=216		
	1	

LANGUAGE GOALS for low achieving, high achieving, students with disabilities and English Language Learners

- Students will be able to use mathematical vocabulary to explain orally and in writing parts of an expression/equation/inequality.
- Students will describe the relationship between a linear equation and a system of linear equations.
- Students will explain orally and in writing how to solve equations and will paraphrase another student's explanation of how to solve the same problem.
- Students will construct response to word problems using sequential words.

PERFORMANCE TASKS

LAUSD Concept Lessons – http://math.lausd.net/middle-school/algebra-1-concept-lessons

-Tommy's T-Shirts -Storage Tanks

-Surround the Pool -Calling Plan -Stacking Cups

Comparing Investments: <u>http://map.mathshell.org/materials/lessons.php?taskid=426&subpage=concept</u> (A-SSE, F-LE)

DIFFERENTIATION						
UDL/FRONT LOADING	ACCELERATION	INTERVENTION				
Prerequisites: Familiarity with g order of operations, exponents, variables, coefficients, functions, domain, quadrants, x-axis, y-axis, line, fractions, integers, equations, rational numbers, irrational numbers, real numbers, expressions by utilizing sentence stems, language frames, visuals, and cloze reading.	Due to their intuitive understanding of mathematical function and processes, students who are mathematically gifted may skip over steps and be unable to explain how they arrived at the correct answer to a problem. Utilize Math Practice 3 with them often. Provide students with opportunities to share their previous knowledge and avoid redundant learning by being encouraged to learn the sophisticated and advanced information and skills of the curriculum or related	 Adaptations for students with visual and auditory perceptual difficulties: The student is located close to where the teacher is providing instruction, in addition to being able to receive peer assistance. Visual cues such as linear models are provided on the wall. Adaptations for students with integrative difficulties such as abstract thinking and 				
and communicating, estimating and verifying answers and solutions, logical reasoning, and using technology.	curriculums at their own rate. This also includes the opportunity for students to make personal meaning of the lesson. Provide students with a variety of learning/assessment options. Use engaging, active, and	 conceptualization: Teachers utilize concrete models such as Algebra tiles for an extended period of time. 				
Students must be able to use the language of mathematics orally and in writing to explain the thinking processes, mathematical concepts and solution strategies they use in solving problems.	grounded in reality activities. The increased complexity of the problems should require higher order thinking skills and provide opportunities for open-ended responses.	 Students verbalize what they are doing through words, pictures, and numbers. Students are encouraged to justify their thinking using targeted mathematical vocabulary. 				
Students, at least informally, should become familiar with examples of inductive and deductive reasoning.	Students who are accelerated in mathematics often demonstrate an uneven pattern of mathematical understanding and development, and may be much stronger in concept development than they are in	 Students are encouraged to restate word problems in their own words. Students are provided opportunities to teach the concept to each other. 				

DIFFERENTIATION						
UDL/FRONT LOADING	ACCELERATION	INTERVENTION				
Students should become proficient in the use of scientific calculators and graphing calculators to enhance their understanding of mathematical ideas and concepts.	computation. These students often prefer to learn all they can about a particular mathematical idea before leaving it for new concepts. Therefore, a more expansive approach focused on student interest may avoid the frustration that occurs when the regular classroom schedule demands that it is time to move on to another topic.	 An abstract concept is represented in a variety of ways, such as concrete examples, words, symbols, drawings, and acting it out. Students are placed in heterogeneous groups for peer assistance and modeling 				

References:

- 1. National Governors Association Center for Best Practices, Council of Chief State School Officers. (2010). *Common Core State Standards (Mathematics)*. Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers.
- 2. McCallum, W., Zimba, J., Daro, P. (2011, December 26 Draft). *Progressions for the Common Core State Standards in Mathematics*. Cathy Kessel (Ed.). Retrieved from http://ime.math.arizona.edu/progressions/#committee.
- 3. Engage NY. (2012). New York Common Core Mathematics Curriculum. Retrieved from <u>http://www.engageny.org/resource/high-school-algebra-i.</u>
- 4. Mathematics Assessment Resource Service, University of Nottingham. (2007 2012). Mathematics Assessment Project. Retrieved from http://map.mathshell.org/materials/index.php.
- 5. Smarter Balanced Assessment Consortium. (2012). Smarter Balanced Assessments. Retrieved from http://www.smarterbalanced.org/.
- 6. Partnership for Assessment of Readiness for College and Career. (2012). PARCC Assessments. Retrieved from http://www.parcconline.org/parcc-assessment.
- 7. California Department of Education. (2013). Draft Mathematics Framework Chapters. Retrieved from http://www.cde.ca.gov/be/cc/cd/draftmathfwchapters.asp.
- 8. National Council of Teachers of Mathematics (NCTM) Illuminations. (2013). Retrieved from http://illuminations.nctm.org/Weblinks.aspx.
- 9. The University of Arizona. (2011-12). Progressions Documents for the Common Core Math Standards. Retrieved from http://ime.math.arizona.edu/progressions.

Algebra 1 – UNIT 2 Linear and Exponential Relationships

Critical Area: Students will learn function notation and develop the concepts of domain and range. They move beyond viewing functions as processes that take inputs and yield outputs and start viewing functions as objects in their own right. They explore many examples of functions, including sequences; they interpret functions given graphically, numerically, symbolically, and verbally, translate between representations, and understand the limitations of various representations. They work with functions given by graphs and tables, keeping in mind that, depending upon the context, these representations are likely to be approximate and incomplete. Their work includes functions that can be described or approximated by formulas as well as those that cannot. When functions describe relationships between quantities arising from a context, students reason with the units in which those quantities are measured. Students explore systems of equations and inequalities, and they find and interpret their solutions. Students build on and informally extend their understanding of integer exponents to consider exponential functions. They compare and contrast linear and exponential functions, distinguishing between additive and multiplicative change. They interpret arithmetic sequences as linear functions and geometric sequences as exponential functions.

CLUSTERS	COMMON CORE STATE STANDARDS		
Extend the properties of exponents to rational	Number and Quantity - The Real Number System		
exponents.	N.RN.1. Explain how the definition of the meaning of rational exponents follows from extending the		
	properties of integer exponents to those values, allowing for a notation for radicals in terms of rational		
	exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5^{(1/3)3}$ to hold, so		
	$(5^{1/3})^3$ must equal 5.		
	N.RN.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.		
Build a function that models a relationship	Functions - Building Functions		
between two quantities.	F.BF.1. Write a function that describes a relationship between two quantities. \star		
Limit to F.BF.1a, 1b, and 2 to linear and	a. Determine an explicit expression, a recursive process, or steps for calculation from a context.		
exponential functions. In F.BF.2, connect	b. Combine standard function types using arithmetic operations. For example, build a function that		
arithmetic sequences to linear functions and	models the temperature of a cooling body by adding a constant function to a decaying exponential, and		
geometric sequences to exponential functions.	relate these functions to the model.		
	F.BF.2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them		
	to model situations, and translate between the two forms. \star		
Build new functions from existing functions.	Functions - Building Functions		
	F.BF.3. Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific		
Focus on vertical translations of graphs of	values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and		
linear and exponential functions. Relate the	illustrate an explanation of the effects on the graph using technology. <i>Include recognizing even and odd</i>		
vertical translation of a linear function to its y-	functions from their graphs and algebraic expressions for them.		
intercept. While applying other transformations			
to a linear graph is appropriate at this level, it			
may be difficult for students to identify or			
distinguish between the effects of the other			
transformations included in this standard.			

CLUSTERS	COMMON CORE STATE STANDARDS			
Understand the concept of a function notation.	Functions - Interpreting Functions			
	F.IF.1 . Understand that a function from one set (called the domain) to another set (called the range) assigns			
	to each element of the domain exactly one element of the range. If f is a function and x is an			
	element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f			
	is the graph of the equation $y = f(x)$.			
	F.IF.2 . Use function notation, evaluate functions for inputs in their domains, and interpret statements that			
	use function notation in terms of a context.			
	F.IF.3 . Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset			
	of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n + 1) = f(n) + f(n - 1)$ for $n \ge 1$.			
Interpret functions that arise in applications in	$J(n+1) - J(n) + J(n-1)J(n \ge 1.$ Equations Interpreting Functions			
tarma of a context	FUNCTIONS - Interpreting Functions FUE A For a function that models a relationship between two quantities interpret key features of graphs and			
terms of a context.	F.IF. For a function that models a relationship between two quantities, interpret key relatives of graphs and tables in terms of the quantities, and skatch graphs showing key features given a verbal description of the			
Focus linear and exponential functions	relationship. Kay factures include: intercents: intervals where the function is increasing decreasing			
Focus linear and exponential junctions	relationship. Key jealures include. Intercepts, intervals where the junction is increasing, decreasing,			
	positive, or negative; relative maximums and minimums; symmetries; end benavior; and periodicity.			
Analyze functions using different	Functions - Interpreting Functions			
representations.	F.IF. 7. Graph functions expressed symbolically and snow key features of the graph, by hand in simple			
Linear, exponential, quaaratic, absolute value, step,	cases and using technology for more complicated cases.			
piecewise-aefinea.	a. Graph linear and quadratic functions and snow intercepts, maxima, and minima.			
	b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute			
	value functions. *			
	F.IF.9 . Compare properties of two functions each represented in a different way (algebraically, graphically,			
	numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and			
	an algebraic expression for another, say which has the larger maximum.			
Solve systems of equations.	Algebra - Reasoning with Equations and Inequalities			
Linear-linear and linear-quadratic.	A.REI.5. Prove that, given a system of two equations in two variables, replacing one equation by the sum			
	of that equation and a multiple			
	of the other produces a system with the same solutions			
	A.REI.6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs			
	of linear equations in two variables.			
Represent and solve equations and inequalities	Algebra - Reasoning with Equations and Inequalities			
Graphically.	A.REI.10 . Understand that the graph of an equation in two variables is the set of all its solutions plotted in			
Linear and exponential; learn as general principle.	the coordinate plane, often forming a curve (which could be a line).			
	A.REI.11 . Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$			
	intersect are the solutions of the equation $f(x) = g(x)$ find the solutions approximately, e.g., using			
	technology to graph the functions, make tables of values, or find successive approximations. Include cases			
	where $f(x)$ and/ or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic			
	functions. \star			

CLUSTERS	COMMON CORE STATE STANDARDS			
	A.REI.12. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the			
	boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in			
	two variables as the intersection of the corresponding half-planes.			
MATHEMATICS PRACTICES				
1. Make sense of problems and persevere in				
solving them.				
2. Reason abstractly and quantitatively.	Emphasize Mathematical Practices 1, 2, 4, and 7 in this unit.			
3. Construct viable arguments and critique the				
reasoning of others.				
4. Model with mathematics.				
5. Use appropriate tools strategically.				
6. Attend to precision.				
7. Look for and make use of structure.				
8. Look for and express regularity in repeated				
reasoning.				
LEARNING PROGRESSIONS				
CDE Progress to Algebra K-8 www.cde.ca.gov/be/cc/cd/documents/updateditem12catt3.doc				
Progression on HS Math - http://commoncoretools.me/wp-content/uploads/2012/12/ccss_progression_functions_2012_12_04.pdf				

(m)Major Clusters - area of intensive focus where students need fluent understanding and application of the core concepts.

(s)Supporting/Additional Clusters – designed to support and strengthen areas of major emphasis/expose students to other subjects.

★Indicates a modeling standard linking mathematics to everyday life, work, and decision-making.

(+) Indicates additional mathematics to prepare students for advanced courses.

ENDURING UNDERSTANDINGS		ESSENTIAL QUESTIONS		KEY VOCABULARY
•	Write in equivalent forms that represent both linear and	1.	How will students identify the different parts of a two-	arithmetic Sequence
	exponential functions and construct functions to describe	1	system equation and explain their meaning within the	asymptote
	the situation and to find solutions	ĺ	context of the problem?	boundary
•	Apply rules that builds a function that models a	2.	What is the importance of identifying the structure of	coefficients
	relationship between two quantities	1	functions and using different ways to represent them?	domain
•	Represent equations and inequalities in one variable in	3.	Why is it important to identify and extend the	exponential
	various ways and use them to extend the properties of	ĺ	properties of exponents to rational exponents?	explicit
	exponents to rational exponents	4.	When do students decide the best method to solve an	function
•	Understand the relationship between quantities of two	1	inequality?	geometric Sequence
	systems of equations and the methods to solve two system	5.	How do you know which method to use in solving a	in-equalities
	of linear equations	ĺ	system of equations?	linear
		6.	Why is it important to analyze functions using different	range
•	Model with linear and exponential functions.	ĺ	representations?	rate of change
•	Systems of equations compare at least two different	7.	How do I analyze algebraic equations/inequalities to	rational
	tunctions.	L	solve problems?	recursively

ENDURING UNDERSTANDINGS			ESSENTIAL QUESTIONS	KEY VOCABULARY
٠	Vertical translations graphically move lines and curves	8.	What must students understand in order to create	symmetries
	around the y-intercept.	0	equations that describe numbers or relationships?	
•	Functions grow by equal differences over equal intervals	9.	How do students know the most efficient ways to build	
	while exponential functions grow by equal factors over		a function that models a relationship between two	
	equal intervals.	10	quantities?	
•	A function is an inequality because it describes a	10.	Why is it important to understand solving a system of	
	relationship between values of variables with more than a		linear and exponential relationships in two variables	
	one-to-one correspondence.	1.1	algebraically and graphically?	
•	The parameters of a function are defined by the	11.	Is there functional relationship in non-linear and	
	situational context it models.	10	amolguous data?	
		12.	what is the difference in linear and exponential functions and how is that represented graphically?	
		12	What well life situations would used some prosticil or	
		15.	what real-file situations would need exponential or linear function functions to describe them?	
		14	What is the relationship of a recursive function on the	
		14.	table and graph that represents it?	
		15	How might an arithmetic sequence be connected to a	
		15.	linear function?	
		16	How might a geometric sequence be connected to an	
		10.	exponential function?	

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
LAUSD Adopted Textbooks and Programs	Use Analogy in the Context of the Math	Formative Assessments
 Big Ideas Learning - Houghton Mifflin Harcourt, 2015: Big Ideas Algebra I College Preparatory Mathematics, 2013: Core Connections, Algebra I The College Board, 2014:Springboard Algebra I Materials: California Revised Mathematics Framework: 	Exponential Growth. When a quantity grows with time by a multiplicative factor greater than 1, it is said the quantity grows exponentially. Hence, if an initial population of bacteria, P_0 , doubles each day, then after t days, the new population is given by $P(t) = P_0 2^t$. This expression can be generalized to include different growth rates, as in $(t) = P_0 r^t$. The following example illustrates the type of problem that students can face after they have worked with basic exponential functions like	http://www.ccsstoolbox.com/parcc/PARCCPrototype main.html • Cellular growth: F-LE.2 and F-BF.2 • Rabbit populations: F-LE. 2 and 5 PARCC - http://parcconline.org/samples/mathematics/high- school-functions F-IF.9
http://www.cde.ca.gov/be/cc/cd/draftmathfwchapters.asp.	these.	http://parcconline.org/sites/parcc/files/PARCC SampleItems Mathematics HSAlgIMylaPool 081913 Final
Engage New York	Example.	<u>.pdf</u> Myla's Swimming Pool: F-LE.2
http://www.engageny.org/sites/default/files/resource/attac hments/algebra-i-m1-copy-ready-materials.pdf	On June 1, a fast growing species of algae is accidentally introduced into a lake in a city park. It starts to grow and cover the surface of the lake in such a way that the area	http://parcconline.org/sites/parcc/files/HSAlg1Math2 MiniGolfPrices.pdf Mini -Golf Prices: F-BF.2
Illustrative Mathematics	covered by the algae doubles every day. If it continues to	
Skeleton Tower – F. BF.1a http://www.illustrativemathematics.org/illustrations/75	grow unabated, the lake will be totally covered and the fish in the lake will suffocate. At the rate it is growing, this will	

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
A Sum of Functions – F. BF. 1a	happen on June 30.	LAUSD Assessments
http://www.illustrativemathematics.org/illustrations/230 Lake Algae – F. BF.1a http://www.illustrativemathematics.org/illustrations/533 Logistic Growth Model, Explicit Version: F-IF.4 http://www.illustrativemathematics.org/illustrations/804 Inside Mathematics	a. When will the lake be covered halfway?b. Write an equation that represents the percentage of the surface area of the lake that is covered in algae as a function of time (in days) that passes since the algae was introduced into the lake.	The district will be using the SMARTER Balanced Interim Assessments. Teachers would use the Interim Assessment Blocks (IAB) to monitor the progress of students. Each IAB can be given twice to show growth over time.
http://www.insidemathematics.org/index.php/tools-for-	Facilitate a discussion that would direct students to generate	
teachers/course-1-algebra Tools for algebra	recursive formula for the sequence $P(n)$, which gives the population at a given time period n in terms of the	State Assessments
Math Assessment Project (MAPS) Building and Solving Equations 2: A-REI <u>http://map.mathshell.org/materials/lessons.php?taskid=55</u> <u>4#task554</u> Manipulating Radicals: N-RN <u>http://map.mathshell.org/materials/lessons.php?taskid=54</u> <u>7#task547</u>	 population at a given time period n in terms of the population n-1 for the following example: Populations of bacteria can double every 6 hours under ideal conditions, at least until the nutrients in its supporting culture are depleted. This means a population of 500 such bacteria would grow to 1000, etc. Use of Exit Slips to assess student understanding. http://daretodifferentiate.wikispaces.com/Pre- Assessment EPR) strategies for whole group instruction. Strategies to check for understanding: Individual White Boards, Fist of Five, Exit Slip, etc. 	California will be administering the SMARTER Balance Assessment as the end of course for grades 3-8 and 11. There is no assessment for Algebra 1. The 11th grade assessment will include ítems from Algebra 1, Geometry, and Algebra 2 standards. For examples, visit the SMARTER Balance Assessment at: <u>http://www.smarterbalanced.org/</u>

LANGUAGE GOALS for low achieving, high achieving, students with disabilities and English Language Learners			
Students will be able to justify (orally and in writing) their rationale for solving a system of equations using various methods.			
<i>Example:</i> To solve these equations, I use instead of because			
Students will be able to explain (writing/speaking/listening) their understanding of the properties of the quantity represented in terms of their context.			
<i>Example:</i> $3x - 9y = 5$ and $y = 1/3 x + 1$			
Students will be able to read a word problem and identify the language needed to create an algebraic representation.			
Students will be able to explain (orally and in writing) and justify their rationale for their choice of method to solve inequality equations.			
Example: To solve this inequality, I use because			
Students will be able to describe their understanding (orally and in writing) of math vocabulary related to expressions and equations.			
PERFORMANCE TASKS			
Illustrative Mathematics			

LAUSD Secondary Mathematics

Influenza epidemic : F.IF.4 http://www.illustrativemathematics.org/illustrations/637 Logistic Growth Model, Abstract Version : F.IF.4 http://www.illustrativemathematics.org/illustrations/800 ow is the Weather?: F.IF.4 http://www.illustrativemathematics.org/illustrations/649 Telling a Story With Graphs : F.IF.4 <u>http://www.illustrativ</u>emathematics.org/illustrations/650 LAUSD Concept Lessons - http://math.lausd.net/middle-school/algebra-1-concept-lessons Tying the Knots Mathematics Assessment Project Formative Assessments/ Tasks Comparing Investment - F.LE 1-5. http://map.mathshell.org/materials/download.php?fileid=1250 Fuctions and Everyday - F.BF.1 and F.LE.1-5 : http://map.mathshell.org/materials/download.php?fileid=1259 DIFFERENTIATION **UDL/FRONT LOADING ACCELERATION INTERVENTION** Students will design a word problem that reflects the use of Use real-word context examples to demonstrate Prerequisites Students apply their understanding of the properties the meaning of the parts of a system of graphing inequalities. equations for the students. of exponents. Students will write a real-life scenario and explain the Students apply and extend their knowledge of process needed to solve a system of linear equations with Use of visual interactive websites that through . rational numbers to exponents and to find the values two variables. the manipulation of graphs represent of numerical values that include those numbers. inequalities. Student will create a real world problem where students will build a function that model a relationship between two Students apply their knowledge about the meaning of Students find it useful through technology to recognize functions that represents the same the representation of radicals with rational exponents. quantities. relationship. Students will understand that if the two sides of one Students will explain the relationship of properties of equation are equal, and the two sides of another exponents to exponential functions. Provide a situation that uses realia to equation are equal, then the sum (or difference) of demonstrate how to build a function to model a these is equal. • Students will compare and contrast the properties of a relationship between two quantities. linear equation and linear inequality equation. Students will extend their knowledge of learning the relationship between the algebraic representation and Students discuss the following question: Which its graph. quantity will grow more rapidly; one that is increasing exponentially, one that is increasing Students will use their prior knowledge of creating quadratically or one that is increasing linearly? tables of values for function to find a solutions. Students will extend their prior knowledge of graphing two equations and be able to interpret the intersections of the graph as the solution to the original equation.

Algebra 1 – UNIT 3 Descriptive Statistics

Critical Area: Experience with descriptive statistics began as early as Grade 6. Students were expected to display numerical data and summarize it using measures of center and variability. By the end of middle school they were creating scatterplots and recognizing linear trends in data. This unit builds upon that prior experience, providing students with more formal means of assessing how a model fits data. Students use regression techniques to describe approximately linear relationships between quantities. They use graphical representations and knowledge of the context to make judgments about the appropriateness of linear models. With linear models, they look at residuals to analyze the goodness of fit.

COMMON CORE STATE STANDARDS	
Statistics and Probability - Interpreting Categorical and Quantitative Data	
S.ID.1 Represent data with plots on the real number line (dot plots, histograms, and box plots).	
S.ID.2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and	
spread (interquartile range, standard deviation) of two or more different data sets.	
S.ID.3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for	
possible effects of extreme data points (outliers).	
Statistics and Probability - Interpreting Categorical and Quantitative Data	
S.ID.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative	
frequencies in the context of the data (including joint, marginal, and conditional relative frequencies).	
Recognize possible associations and trends in the data.	
S.ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are	
related.	
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use	
given functions or choose a function suggested by the context. Emphasize linear and exponential models.	
b. Informally assess the fit of a function by plotting and analyzing residuals.	
c. Fit a linear function for a scatter plot that suggests a linear association.	
Statistics and Probability Interneting Categorical and Quantitative Data	
S ID 7 Interpret the slope (rate of change) and the intercent (constant term) of a linear model in the context	
of the data	
of the data.	
S ID 8 Compute (using technology) and interpret the correlation coefficient of a linear fit	
5.15.6 compute (using technology) and interpret the correlation coefficient of a finear fit.	
S ID 9 Distinguish between correlation and causation	

LAUSD Secondary Mathematics

rel ari	ationship and a cause-and-effect relationship ses in S.ID.9.		
	MATHEMATICS PRACTICES		
1.	Make sense of problems and persevere in		
	solving them.		
2.	Reason abstractly and quantitatively.		
3.	Construct viable arguments and critique	Emphasize Mathematical Practice 1, 2, 3, 4, 5, and 7 in this unit.	
	the reasoning of others.		
4.	Model with mathematics.		
5.	Use appropriate tools strategically.		
6.	Attend to precision.		
7.	Look for and make use of structure.		
8.	Look for and express regularity in repeated		
	reasoning.		
LEARNING PROGRESSIONS			
CDE Pr	CDE Progress to Algebra K-8 www.cde.ca.gov/be/cc/cd/documents/updateditem12catt3.doc		

(m)Major Clusters - area of intensive focus where students need fluent understanding and application of the core concepts.

(s)Supporting/Additional Clusters – designed to support and strengthen areas of major emphasis/expose students to other subjects.

★Indicates a modeling standard linking mathematics to everyday life, work, and decision-making.

(+) Indicates additional mathematics to prepare students for advanced courses.

	ENDURING UNDERSTANDINGS	ESSENTIAL QUESTIONS	KEY VOCABULARY
•	A linear function can be used to model the	How would you analyze bivariate data using your	association
	relationship between two numerical variables.	knowledge of proportions?	bivariate data
•	The strength of a relationship and appropriateness of		box plots
	the model used can be determined by analyzing	How would you describe categorical variables?	categorical variables
	residuals.		causation
•	A statistical relationship, such as correlation	How would you use your knowledge of functions to	correlation
	coefficient, is not necessarily the same as a cause-	fit models to quantitative data?	correlation coefficient
	and-effect relationship.		dot plots
•	The correlation coefficient will be understood and	How would you interpret the parameters of a linear	histogram
	the focus will be on the computation and	model in the context of data that it represents?	intercept
	interpretation of the correlation coefficient as a		linear model
	measure of how well the data fit the relationship.	How can you compute correlation coefficients using	line of best fit
•	A deeper look at bivariate data can be taken to	technology and interpret the value of the coefficient?	mean, median
	describe categorical associations and how to fit		outlier
	models to quantitative data.	How do analysis of bivariate data and knowledge of	quantitative variables
		proportions intersect with each other?	scatter plot

ENDURING UNDERSTANDINGS	ESSENTIAL QUESTIONS	KEY VOCABULARY
		slope (rate of change) standard deviation

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
LAUSD Adopted Textbooks and Programs	Use graphs such as the one below to show two ways of	
 Big Ideas Learning - Houghton Mifflin Harcourt, 2015: Big Ideas Algebra I College Preparatory Mathematics, 2013: Core Connections, Algebra I The College Board, 2014: Springboard Algebra I California Revised Mathematics Framework: 	comparing height data for males and females in the 20-29 age group. Both involve plotting the data or data summaries (box plots or histograms) on the same scale, resulting in what are called parallel (or side-by-side) box plots and parallel histograms (S-ID.1). The parallel histograms show the distributions of heights to be mound shaped and fairly symmetrical	Thermometer Crickets http://www.smarterbalanced.org/wordpress/ wp-content/uploads/2012/09/performance- tasks/crickets.pdf
http://www.cde.ca.gov/be/cc/cd/draftmathfwchapter	(approximately normal) in shape. The data can be	
<u>s.asp</u> . NCTM Illuminations	described using the mean and standard deviation	
NCTM IlluminationsLine of Best Fit : S.ID.6	described using the mean and standard deviation. Have students sketch each distribution and answer	LAUSD ASSESSMENT
 <u>http://illuminations.nctm.org/ActivityDetail.asp</u> <u>x?ID=146</u> Linear Regression <u>http://illuminations.nctm.org/ActivityDetail.asp</u> <u>x?ID=82</u> 	questions about it just from knowledge of these three facts (shape, center, and spread). They also observe that the two measures of center, median and mean, tend to be close to each other for symmetric distributions.	The district will be using the SMARTER Balanced Interim Assessments. Teachers would use the Interim Assessment Blocks (IAB) to monitor the progress of students. Each IAB can be given twice to show growth over time.
Illustrative Mathematics	• end	
Haircut Costs:S.ID.1-3 http://www.illustrativemathematics.org/illustrations/ 942	8 9	California will be administering the
 Mathematics Assessment Project – MARS Tasks Devising a Measure for Correlation – S.ID : 	Formation 0.04	course for grades 3-8 and 11. There is no
http://map.mathshell.org/materials/download.ph p?fileid=1234	Heights of U.S. males and females in the 20–29 age group.	The 11th grade assessment will include items from Algebra 1, Geometry, and Algebra 2 standards. For examples, visit the
Statistics Online Computational Resource	Source: U.S. Census Bureau, Statistical Abstract of the United States: 2009, Table 201.	SMARTER Balance Assessment at:
(SOCR)	Have students learn how to take a careful look at scatter	SBAC - http://www.smarterbalanced.org/
http://www.socr.ucla.edu/	plots, as sometimes the "obvious" pattern does not tell the whole story, and can even be misleading. The graphs	http://dese.mo.gov/divimprove/assess/docume nts/asmt-sbac-math-hs-sample-items.pdf

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
	show the median heights of growing boys through the	
	ages 2 to 14. The line (least squares regression line) with	
	slope 2.47 inches per year of growth looks to be a perfect	
	fit (S-ID.6c). But, the residuals, the differences between	
	the corresponding coordinates on the least squares line and	
	the actual data values for each age, reveal additional	
	information (such as a teacher think-aloud).	
	Sample questions to facilitate student discussion and	
	understanding: What does this scatter plot/histogram	
	show? How do you know? Pick any point on the	
	histogram and explain what it means. What does it mean	
	in relation to the other plots on the histogram? Does	
	anyone have another way to explain it?	
	Median heights of boys	
	Median Heights Scatter Plot 70 70 100 60 100 60 100 60 100 60 100 60 100 12 100 12 100 12 100 12 100 12 100 12 100 12 100 12 100 12 100 12 100 12 100 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 <th></th>	

LANGUAGE GOALS for low achieving, high achieving, students with disabilities and English Language Learners

- Students will be able to explain the process of analyzing bivariate data. (Orally and in writing)
- Students will be able to describe categorical associations using knowledge of functions in quantitative data.

- Students will be able to interpret the parameters of linear model in the context of data it represents and write the interpretation using complex sentences.
- Students will be able to describe the process of computing correlation coefficients.

PERFORMANCE TASKS

ILLUSTRIVE MATHEMATICS

- Speed Trap S.ID.1, 2, 3: <u>http://www.illustrativemathematics.org/illustrations/1027</u>
- Coffee and Crime S.ID.6-9: <u>http://www.illustrativemathematics.org/illustrations/1307</u>
- Olympic Men's 100-meter dash S.ID.6a, 7: <u>http://www.illustrativemathematics.org/illustrations/1554</u>
- Used Subaru Foresters I S.ID.6a: <u>http://www.illustrativemathematics.org/illustrations/941</u>
- Texting and Grades II S.ID.7 : <u>http://www.illustrativemathematics.org/illustrations/1028</u>

Mathematics Assessment Project (MARS Tasks):

- Representing Data 1: Using Frequency Graphs S.ID 1-3, 5: <u>http://map.mathshell.org/materials/download.php?fileid=1230</u>
- Representing Data Using Box Plots S.ID. 1-3, 5, 6 a- c: <u>http://map.mathshell.org/materials/download.php?fileid=1243</u>
- Interpreting Statistics: A Case of Muddying the Waters S.ID 7-9 <u>http://map.mathshell.org/materials/download.php?fileid=686</u>

NCTM Illuminations Lessons

DIFFERENTIATION			
UDL/FRONT LOADING	ACCELERATION	INTERVENTION	
 Use graphs of experiences that are familiar to students to increase accessibility and supports understanding and interpretation of proportional relationship. Students are expected to both sketch and interpret graphs including scatter plot. Students create an equation with given information from a table, graph, or problem situation. Engage students in interpreting slope and intercept using real world applications (e.g. bivariate data). 	Students will explore how the residuals, the differences between the corresponding coordinates on the least squares line and the actual data values for each age, reveal additional information. Students should be able to sketch each distribution and answer questions about it just from knowledge of these three facts (shape, center, and spread). Have students design an experiment (project) where they would collect data from different sources, make a scatter plot of the data, draw a line of best fit modeling the data. From the plot, students would write the regression coefficient and the residual to explain the strength of the association.	Have the students work in groups to generate data from the internet, such as the CST scores and other data. Have them construct a table based on the pattern and then graph the values and explain the relationship observed on the graph (association). Example: Certain students took two different tests (Test A and Test B). In the scatter diagram, each square represents one student and shows the scores that student got in the two tests.	

References:

- 1. National Governors Association Center for Best Practices, Council of Chief State School Officers. (2010). *Common Core State Standards (Mathematics)*. Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers.
- 2. McCallum, W., Zimba, J., Daro, P. (2011, December 26 Draft). *Progressions for the Common Core State Standards in Mathematics*. Cathy Kessel (Ed.). Retrieved from http://ime.math.arizona.edu/progressions/#committee.
- 3. Engage NY. (2012). New York Common Core Mathematics Curriculum. Retrieved from <u>http://www.engageny.org/resource/high-school-algebra-i.</u>
- 4. Mathematics Assessment Resource Service, University of Nottingham. (2007 2012). Mathematics Assessment Project. Retrieved from http://map.mathshell.org/materials/index.php.
- 5. Smarter Balanced Assessment Consortium. (2012). Smarter Balanced Assessments. Retrieved from http://www.smarterbalanced.org/.
- 6. Partnership for Assessment of Readiness for College and Career. (2012). PARCC Assessments. Retrieved from http://www.parcconline.org/parcc-assessment.
- 7. California Department of Education. (2013). Draft Mathematics Framework Chapters. Retrieved from http://www.cde.ca.gov/be/cc/cd/draftmathfwchapters.asp.
- 8. National Council of Teachers of Mathematics (NCTM) Illuminations. (2013). Retrieved from http://illuminations.nctm.org/Weblinks.aspx.
- 9. The University of Arizona. (2011-12). Progressions Documents for the Common Core Math Standards. Retrieved from http://ime.math.arizona.edu/progressions.

Algebra 1 - Unit 4 Expressions and Equations

Description of the critical area: In this unit, students build on their knowledge from Unit 2, where they extended the laws of exponents to rational exponents. Students apply this new understanding of numbers and strengthen their ability to see structure in and create quadratic and exponential expressions. They create and solve equations, inequalities, and systems of equations involving quadratic expressions and determine the values of the function it defines. Students understand that polynomials form a system analogous to the integers, they choose and produce equivalent forms of an expression.

CLUSTERS	COMMON CORE STATE STANDARDS
(m)Interpret the structure of expressions.	Algebra - Seeing Structure in Expressions A-SSE.1 Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)n$ as the product of P and a factor not depending on P. A-SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see $x4 - y4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.
(m)Write expressions in equivalent forms to solve problems.	Algebra - Seeing Structure in Expressions A-SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15t can be rewritten as $(1.15^{1/2})^{12t} \approx 1.012^{12t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.
(m)Perform arithmetic operations on polynomials.	Algebra – Arithmetic with Polynomial and Rational Expressions A-APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
(m)Create equations that describe numbers or relationships.	Algebra - Creating EquationsA-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.A-CED.2 Create equations in two or more variables to represent relationships

LAUSD Secondary Mathematics

June 23, 2015 Draft

CLUSTERS	COMMON CORE STATE STANDARDS	
	between quantities; graph equations on coordinate axes with labels and scales.	
	A-CED.4 Rearrange formulas to highlight a quantity of interest, using the same	
	reasoning as in solving equations. For example, rearrange Ohm's law $V = IR$ to	
	highlight resistance R.	
(m)Solve equations and inequalities in one variable.	Algebra - Reasoning with Equations and Inequalities	
	A-REI.4 Solve quadratic equations in one variable.	
	a. Use the method of completing the square to transform any quadratic equation	
	in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive	
	the quadratic formula from this form.	
	b. Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square	
	roots, completing the square, the quadratic formula and factoring, as appropriate	
	to the initial form of the equation. Recognize when the quadratic formula gives	
	complex solutions and write them as $a \pm bi$ for real numbers a and b.	
(s)Solve systems of equations.	Algebra - Reasoning with Equations and Inequalities	
	A-REI.5. Prove that, given a system of two equations in two variables, replacing	
	one equation by the sum of that equation and a multiple of the other produces a	
	system with the same solutions.	
	A-REI.6. Solve systems of linear equations exactly and approximately (e.g.,	
	with graphs), focusing on pairs of linear equations in two variables	
	A-REI./ Solve a simple system consisting of a linear equation and a quadratic	
	equation in two variables algebraically and graphically. For example, find the	
	points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$.	
MATHEMATICAL PRACTICES		
1. Make sense of problems and persevere in solving them.		
2. Reason abstractly and quantitatively.		
5. Construct viable arguments and critique the reasoning of others.		
4. Model with mathematics.	Emphasize Mathematical Practice 1, 2, 4, and 7 in this unit	
5. Ose appropriate tools strategically.	Emphasize Mathematical Fractice 1, 2, 4, and 7 in this unit.	
7 I ook for and make use of structure		
8 Look for and express regularity in repeated reasoning		
I FARNING PROGRESSIONS		
Progression to Algebra http://ime.math.arizona.edu/progressions/		
1 rogression to rageora <u>map.//mic.maan.arizona.eda/progressions/</u>		
Progression on HS Math - http://commoncoretools.me/wp-content/uploads/2012/12/ccss_progression_functions_2012_12_04.pdf		
(m)Major Clusters – area of intensive focus where students need fluent understanding and application of the core concepts.		
(s)Supporting/Additional Clusters – designed to support and strengthen areas of major emphasis/ex	pose students to other subjects.	

LAUSD Secondary Mathematics

★Indicates a modeling standard linking mathematics to everyday life, work, and decision-making.

(+) Indicates additional mathematics to prepare students for advanced courses.

ENDURING UNDERSTANDINGS	ESSENTIAL QUESTIONS	KEY VOCABULARY
 Represent a quantity in terms of an expression, such as terms, factors, and coefficients by viewing one or more of their parts as a single entity. Write in equivalent forms to find solutions that reveal and explain properties of quadratic expressions from completing the square, factoring, and using properties of exponents. Apply rules so that polynomials form a system analogous to integers. Represent equations and inequalities in one variable in various ways and use them to solve problems. Understand the relationship between quantities of two or more variables through graphing on a coordinate plane system. Transform quadratic equations using the method of completing the square to derive a solution. Recognize the various methods to solve quadratic equations stemming from an initial form as appropriate: taking the square root, completing the square, using the quadratic formula, and factoring. Identify when the quadratic formula gives complex solutions. Solve systems of linear equations in two variables algebraically and graphically 	 How will students identify the different parts of an expression and explain their meaning within the context of the problem? What is the importance of identifying the structure of an expression and ways to rewrite it? Why is it important to solve and produce equivalent forms of an expression? When is factoring the best method to solve a quadratic equation? When is completing the square useful to reveal the maximum or minimum value of the function it defines? How do students know which method to use in solving quadratic equations? Why is it important to know the operations of integers to understand the properties of polynomials? How can students analyze algebraic equations/inequalities to solve problems? What must students understand in order to create equations that describe numbers or relationships? How do students know which is the most efficient ways to solve a quadratic equation? Why is it important to understand solving a system of linear and quadratic equations in two variables algebraically and graphically? How are the methods of solving a quadratic equation related? How do students know when the roots of a quadratic equation are real or complex? Why are the methods of solving quadratic equations not learned in isolation? 	 Analogous complex coefficient coordinate equation equivalent exponentials expression factors function inequalities interpret intersection linear polynomial product quadratic quantity term transform variable

LAUSD Secondary Mathematics

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
LAUSD Adopted Textbooks and Programs	• Have students create multiple ways to rewrite an	Formative Assessment
Big Ideas Learning - Houghton Mifflin	expression that represents its equivalent form. Have them	http://www.parcconline.org/samples/mathemat
Harcourt, 2015: Big Ideas Algebra I	understand the notion of equivalent expression and the	ics/high-school-functions
<u>College Preparatory Mathematics</u> , 2013:	solution to an equation. Help them to understand that an	
Core Connections, Algebra I	equation in two variables can sometimes be viewed as	http://dese.mo.gov/divimprove/assess/docume
<u>The College Board, 2014:Springboard</u>	defining a function, if one of the variables is designated as	nts/asmt-sbac-math-hs-sample-items.pdf
<u>Algebra I</u>	if there is just one output for each input. This is the cose if	Missouri HS Math Assessments
	If there is just one output for each input. This is the case if the expression is of the form $y = (expression in x)$ or if it	
Enage New York	the expression is of the form by solving for y	
Need appropriate Module	The use of algebraic tiles to establish a visual	
The star time Mathematics	• The use of algebraic tiles to establish a visual understanding of algebraic expression and the meaning of	I AUSD Assessments
Hustrative Mathematics	terms factors and coefficients can be effective	The district will be using the SMADTED
http://www.mustrativematiematics.org/standard	 The development and proper use of mathematical 	Palanaad Interim Assassments Taashars
<u>S/11S</u>	language (ie: Fraver Model Word Wall using real world	would use the Interim Assessment Blocks
http://www.wiki-teacher.com/ Math Resources -	context) could be used to introduce new terms.	(IAB) to monitor the progress of students
algebra	• Engage students in various techniques for solving	Each IAB can be given twice to show growth
Inside Mathematics	quadratic equations and the relationship between those	over time.
http://www.insidemathematics.org/index.php/to	techniques (A-REI.4.a-b). Teach students to make use of	State Assessments
ols-for-teachers/course-1-algebra Tools for	the symmetric and transitive properties, and certain	State Assessments
algebra	properties of equality with regards to operations (e.g.	California will be administering the
	"equals added to equals is equal") when solving equations.	SMARTER Balance Assessment as the end of
Mathematics Assessment Projects (MARS	This approach would enable students to establish the idea	course for grades 3-8 and 11. There is no
Tasks)	of proof, while not explicitly named, is given a prominent	assessment for Algebra I.
http://map.mathshell.org/materials/tasks.php	role in the solving of equations, and the reasoning and	The 11th grade assessment will include items
Algebra lessons	justification process is not simply relegated to a future	from Algebra 1, Geometry, and Algebra 2
	mathematics course.	SMARTER Balance Assessment at:
	• The representations of quadratics illustrate that the	SWARTER Datable Assessment at.
	process of completing the square has a geometric	SDAC - <u>intp.//www.sinarterbalanced.org/</u>
	Encourage students to explain the origin of the name.	
	erder to make sense out of the process of completing the	
	square (MP 1, MP 5). Completing the square is an	
	example of a theme that reoccurs throughout algebra.	
	finding ways of transforming equations into certain	
	standard forms that have the same solutions.	

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
	Completing the Square: The method of completing the square is a useful skill in Algebra. Is generally used to change a quadratic in standard form, $ax^2 + bx + c$, into one in vertex-form, $a(x - h)^2 + k$. The vertex form can help determine several prometries of fundaria:subtract 1 to the quadratic expression: $y = x^2 + 8x + 15 + 1 - 1 = x^2 + 8x + 16 - 1$. Factoring gives us $y = (x + 4)^2 - 1$. In the picture, note that the tiles used to represent $x^2 + 8x + 15$ have been rearranged to try to form a several prometries of fundaria:	
	Several properties of quadratic functions:square, and that a positive difficult of the afficiency of the square also has applications in Geometry (G-GPE.1) and later higher mathematics courses.unit tile are added into the picture to "complete the square."Example: To complete the square for the quadratic $y = x^2 + 8x + 15$, we take half the coefficient of the x-term and square it to yield 16. We realize that we need only to add 1 andunit tile are added into the picture of "complete the square."	

LANGUAGE GOALS for low achieving, his	gh achieving, students with disabilities and	d English Language Learners
Students will be able to compare and contrast the various metho <i>Example</i> : To solve this quadratic equation. I use	ds of solving a quadratic equation.	because
Students will be able to explain (orally and in writing) their und <i>Example:</i> $x^2 + 6x + 9 = $	erstanding of the properties of the quantity r	represented in terms of their context.
Students will be able to read a word problem and identify the lat <i>Example:</i>	nguage need to create an algebraic represent	ation in order to solve the problem.
Students will explain the use of the	method to find the solution of the quadrati	ic equation. (writing/speaking)
<i>Example</i> : To solve this quadratic equation, I use	because	
Students will be able to understand the vocabulary for the parts meaning in terms of a context.	that make the whole expression/equation and	d be able to identify their parts and interpret their
Example: Using the Frayer Model to introduce students to under	erstand the difference between the parts of an	n expression and that of an equation.
	PERFORMANCE TASKS	
Mathematics Assessment Project – MARS Task		
 Interpreting Algebraic Expressions - A.SSE.1-2: <u>http://map.ma</u> 	thshell.org/materials/download.php?fileid=6	<u>594</u>
 Solving Linear Equations in Two Variables – A.REI.5-7: <u>http://</u> 	//map.mathshell.org/materials/download.php	<u>p?fileid=669</u>
• Sorting Equations and Identities – A.SSE.1-3, A.REI.4: <u>http://r</u>	nap.mathshell.org/materials/download.php?	fileid=688

DIFFERENTIATION		
UDL/FRONT LOADING	ACCELERATION	INTERVENTION
• Have students apply their understanding of expressions as sums of terms and products of factors to find and use the properties of operations to find the values of numerical expressions.	• Provide the students with a problem (either quadratic equation or system of linear equations), ask them to solve it by different methods (for system: algebraic methods – elimination, substitution, addition, etc. and graphing; for quadratics – factoring, completing by square, quadratic formula, graphing), then have them write an explanation of which method was most	 Use of real context examples to demonstrate the meaning of quadratics equation, such rocket trajectory, basketball path when thrown to the hoop, etc. Have students use technology, such as graphing calculator, graphing apps, and other software to graph both a linear
• Engage students in a discussion regarding applying their prior knowledge about the order of operations and properties of operations to transform simple expressions. Transformations require an understanding of the rules for multiplying negative numbers, and properties of integer exponents.	 relevant to the problem type. Take students through the process of designing word problems involving quadratic equations and functions. Have students write a scenario and explain the process needed to solve a system of linear and quadratic equations with two variables. Create a real world problem where factoring is the best method to solve a quadratic expression. Have 	 function and quadratic function on the same plane. Engage them in a discussion to identify the point of intersection of the linear graph and the quadratics graph and discuss what that means. Provide a situation that uses realia to further demonstrate the meaning of quadratic equation.
• Involve students to have a discussion that would have them extend their knowledge of analyzing and solving linear equations and pairs of simultaneous linear equations. Have them use their prior knowledge of graphing proportional relationships, lines, and linear equations to approaching system of linear and quadratic equations with two variables.	students apply their math knowledge of quadratic equations to solve a word problem they have created.	

Algebra 1– UNIT 5 Quadratic Functions and Modeling

Critical Area: In preparation for work with quadratic relationships students explore distinctions between rational and irrational numbers. They consider quadratic functions, comparing the key characteristics of quadratic functions to those of linear and exponential functions. They select from among these functions to model phenomena. Students learn to anticipate the graph of a quadratic function by interpreting various forms of quadratic expressions. In particular, they identify the real solutions of a quadratic equation as the zeros of a related quadratic function. Students learn that when quadratic equations do not have real solutions the number system must be extended so that solutions exist, analogous to the way in which extending the whole numbers to the negative numbers allows x+1 = 0 to have a solution. Formal work with complex numbers comes in Algebra II. Students expand their experience with functions to include more specialized functions— absolute value, step, and those that are piecewise-defined.

CLUSTER HEADINGS	COMMON CORE STATE STANDARDS
(s)Use properties of rational and irrational numbers.	Number and Quantity - The Real Number System
Connect N.RN.3 to physical situations, e.g., finding the perimeter of a square of	N.RN.3 Explain why the sum or product of two rational numbers is rational;
area 2.	that the sum of a rational number and an irrational number is irrational; and that
	the product of a nonzero rational number and an irrational number is irrational.
(m)Interpret functions that arise in applications in terms of a context	Functions - Interpreting Functions
(in) interpret functions that arise in appreations in terms of a context.	F IF 4 For a function that models a relationship between two quantities
Focus on quadratic functions; compare with linear and exponential	interpret key features of graphs and tables in terms of the quantities, and sketch
functions studied in Unit 2.	graphs showing key features given a verbal description of the relationship. Key
	features include: intercepts; intervals where the function is increasing,
	decreasing, positive, or negative; relative maximums and minimums;
	symmetries; end behavior; and periodicity. \star
	F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for he function.
	FIF 6 Calculate and interpret the average rate of change of a function
	(presented symbolically or as a table) over a specified interval. Estimate the rate
	of change from a graph. \star
(m)Analyze functions using different representations.	Functions - Interpreting Functions
	F.IF.7 Graph functions expressed symbolically and show key features of the
For F.IF.7b, compare and contrast absolute value, step and piecewise	graph, by hand in simple cases and using technology for more complicated
defined functions with linear, quadratic, and exponential functions.	cases.★
Highlight issues of domain, range, and usefulness when examining	a. Graph linear and quadratic functions and show intercepts, maxima, and

CLUSTER HEADINGS	COMMON CORE STATE STANDARDS
piecewise defined functions. Note that this unit, and in particular in F.IF.8b, extends the work begun in Unit 2 on exponential functions with integer exponents. For F.IF.9, focus on expanding the types of functions considered to include, linear, exponential, and auadratic.	minima. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
Extend work with quadratics to include the relationship between coefficients and roots, and that once roots are known, a quadratic equation can be factored.	F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. b. Use the properties of exponents to interpret expressions for exponential functions. <i>For example, identify percent rate of change in functions such as</i> $y = (1.02)^t$, $y = (0.97)^t$, $y = (1.01)^{12t}$, $y = (1.2)^{t/10}$ and classify them as representing exponential growth or decay.
	F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
(m)Build a function that models a relationship between two quantities.	Functions - Building Functions
Focus on situations that exhibit a quadratic relationship.	 F.BF.1 Write a function that describes a relationship between two quantities.★ a. Determine an explicit expression, a recursive process, or steps for calculation from a context. b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
(s)Build new functions from existing functions.	Functions - Building Functions
For F.BF.3, focus on quadratic functions, and consider including absolute value functions. For F.BF.4a, focus on linear functions but consider simple situations where the domain of the function must be restricted in order for the inverse to exist, such as $f(x) = x^2$, $x > 0$.	F.BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. <i>Include recognizing even and odd functions from their graphs and algebraic expressions for them</i> .
	F.BF.4 Find inverse functions. a. Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2 x3$ or $f(x) = (x+1)/(x-1)$ for $x \neq 1$.
(s)Construct and compare linear, quadratic, and exponential models and	Functions – Linear, Quadratic, and Exponential Model

CLUSTER HEADINGS	COMMON CORE STATE STANDARDS
solve problems.	F.LE.1 Distinguish between situations that can be modeled with linear functions
Compare linear and exponential growth to quadratic growth.	and with exponential functions.
	a. Prove that linear functions grow by equal differences over equal intervals;
	and that exponential functions grow by equal factors over equal intervals.
	b. Recognize situations in which one quantity changes at a constant rate per
	unit interval relative to another.
	c. Recognize situations in which a quantity grows or decays by a constant
	percent rate per unit interval relative to another.
	F.LE.2 Construct linear and exponential functions, including arithmetic and
	geometric sequences, given a graph, a description of a relationship, or two
	input-output pairs (include reading these from a table).
	F.LE.3 Observe using graphs and tables that a quantity increasing exponentially
	eventually exceeds a quantity increasing linearly, quadratically, or (more
	generally) as a polynomial function.
(s) Interpret expressions for functions in terms of the situation they model.	Functions – Linear, Quadratic, and Exponential Model
	F.LE.5 Interpret the parameters in a linear or exponential function in terms of a context $\pm [I]$ income and exponential of form $f(x) = b^x + x $
	E.I.E.6. A poly quadratic functions to physical problems, such as the motion of
	an object under the force of gravity $\pm CA$
	an object under the force of gravity. * CA
MATHEMATICAL FRACTICES	
1. Make sense of problems and persevere in solving them.	
2. Reason abstractly and quantitatively.	Emphasize Mathematical Prosting 1, 2, 2, 4, 6, and 7 in this write
5. Construct viable arguments and critique the reasoning of others.	Emphasize Mathematical Practices 1, 2, 3, 4, 6, and 7 in this unit.
4. Model with mathematics.	
6 Attend to precision	
7 I ook for and make use of structure	
8 Look for and express regularity in repeated reasoning	
LEARNING P	ROGRESSIONS
Progression to Algebra	
http://ime.math.arizona.edu/progressions/	

(m)Major Clusters - area of intensive focus where students need fluent understanding and application of the core concepts.

(S)Supporting/Additional Clusters – designed to support and strengthen areas of major emphasis/expose students to other subjects.

★Indicates a modeling standard linking mathematics to everyday life, work, and decision-making.

(+) Indicates additional mathematics to prepare students for advanced courses.

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
LAUSD Adopted Textbooks and Programs		Formative Assessment
• Big Ideas Learning - Houghton Mifflin Harcourt,	Facilitate a discussion with students that would help them	PARCC Sample Assessments:
2015: Big Ideas Algebra I	represent functions with graphs and identify key features in	http://www.parcconline.org/samples/mathematics/h
<u>College Preparatory Mathematics, 2013: Core</u>	the graph. Create or <u>use already created activity</u> where	igh-school-mathematics
Connections, Algebra I	students would match different functions with their graphs,	
<u>The College Board, 2014:Springboard Algebra I</u>	tables, and description.	http://www.parcconline.org/sites/parcc/files/PARC
		<u>C Samplettems Mamematics HSAlghiviaumme</u>
Mathematics Assessment Project – MARS Task	Engage students in graphing linear, exponential, and	inperature enange 001/15 Tinar 0.pdr
Function and Everyday Situations - F.IF.7-8	quadratic functions in order for them to develop fluency	LAUSD Assessments
http://map.mathshell.org/materials/download.php?fileid=1259	and the ability to graph them by hand.	The district will be using the SMARTER
		Balanced Interim Assessments. Teachers
Illustrative Mathematics	Help students to develop their idea of modeling physical	would use the Interim Assessment Blocks
Influenza Epidemic – F.IF.4	problems with linear, exponential, and quadratic functions	(IAB) to monitor the progress of students.
http://www.illustrativemathematics.org/illustrations/637	by looking at practical application of linear, quadratic, and	Each IAB can be given twice to show growth
Warming and Cooling – F.IF.4:	exponential situations; such as stock market and	over time.
http://www.illustrativemathematics.org/illustrations/639	investment, compound and simple interests, rocket	State Assessments
How is the weather – F.IF.4:	trajectory, and speed of cars.	California will be administering the
http://www.illustrativemathematics.org/illustrations/649		SMARTER Balance Assessment as the end of
Logistic Growth Model, Explicit Version – F.IF.4	Provide students the opportunity to compare linear,	course for grades 3-8 and 11. There is no
http://www.illustrativemathematics.org/illustrations/804	quadratic, and exponential functions, represented in	assessment for Algebra 1.
The Canoe Trip, Variation 1 – F.IF.4-5	different ways (table, graph, or situation) in writing using	The 11th grade assessment will include items
http://www.illustrativemathematics.org/illustrations/386	graphic organizers; such as T-chart or Venn diagram.	from Algebra 1, Geometry, and Algebra 2
The High School Gym – F.IF.6b		standards. For examples, visit the
http://www.illustrativemathematics.org/illustrations/577		SMARTER Balance Assessment at:
Temperature Change –F.IF.6		<u>http://www.smarterbalanced.org/</u> Sample Smarter Balanced Items:
http://www.illustrativemathematics.org/illustrations/1500		http://sampleitems.smarterbalanced.org/itemprevie
Which Function? - F.IF.8a		w/sbac/index.htm
http://www.illustrativemathematics.org/illustrations/640		
Throwing Baseballs – F.IF.9 and F.IF.4		
http://www.illustrativemathematics.org/illustrations/1279		

LANGUAGE GOALS for **low achieving, high achieving, students with disabilities and English Language Learners** Students will relate and interpret orally and in writing using complex sentences the meaning and features of relationships arising from a situation – whether presented graphically, in tabular form, and/or as verbal descriptions.

Students will explain (orally and in writing) how to model a situation with a quadratic, linear or exponential function, and will be able to use the situation's context to specify the

domain and range.

Students will write how to translate between the tabular, graphical, and symbolic representations of a function, and between these representations and the situation's context.

Students will identify and orally explain key characteristics of functions using the function language and notation to analyze and compare functions.

PERFORMANCE TASKS

Mathematics Assessment Project – MARS Task

• Functions and Everyday Situations – F.IF.4- 9, F.BF.3, F.LE.3: <u>http://map.mathshell.org/materials/download.php?fileid=1259</u>

Illumination Mathematics

Average Cost – F.IF.B.4-5 <u>http://www.illustrativemathematics.org/illustrations/387</u>

Noyce Foundation – Inside Mathematics

• Sorting Functions – F.IF.4, 7a, 7c, 8a, F.LE.2 <u>http://insidemathematics.org/common-core-math-tasks/high-school/HS-F-2008%20Sorting%20Functions.pdf</u>

ACCELERATION	INTEDUCNTION
	INTERVENTION
Provide the students several opportunities to collect data to model different situations related to linear, quadratic, exponential functions, and trigonometric functions. Have students complete a project such as: The half-life of caffeine is 6 hours. In other words, after consuming some caffeine, half of that caffeine is still present in the body after 6 hours. The amount of caffeine in the body at the end of any given time interval is A=Pd-kt where P is the amount of caffeine present in the body at the beginning of the time interval, t is the length of the time interval, and k is the decay constant. For one day from the time you wake up to the time you go to bed, keep a record of the time and the amount consumed of any beverage that contains caffeine. Research how much caffeine is in each type of drink you consumed. Calculate the amount of caffeine in your body when you went to bed that night. Compare your results with your classmates. Use your calculations and the results of others to make a conjecture about the time of day you should consume your last caffeinated beverage if you want to have less than 20 milligrams in your body when you go to sleep. What time should you consume your last caffeinated beverage if you want to have no caffeine in your body when you go to sleep? (CORD Algebra 2: Learning in Context, 2008.)	Have students evaluate different functions (linear, quadratics, and exponential) for a given variable. Then engage the students in identifying appropriate domain for the functions. Help students take the "function machine" that they learned in the earlier grades and turn it into a deeper understanding of relating the situation, table, and rule (formula) of functions. The goal here is to help students make the connections.
Which Function? - F.IF.8a <u>http://www.illustrativemathematics.org/illustrations/640</u> This activity is a nice analysis that involves a real understanding	
	 Provide the students several opportunities to collect data to model different situations related to linear, quadratic, exponential functions, and trigonometric functions. Have students complete a project such as: The half-life of caffeine is 6 hours. In other words, after consuming some caffeine, half of that caffeine is still present in the body after 6 hours. The amount of caffeine in the body at the end of any given time interval is A=Pd-kt where P is the amount of caffeine present in the body at the beginning of the time interval, t is the length of the time interval, and k is the decay constant. For one day from the time you wake up to the time you go to bed, keep a record of the time and the amount consumed of any beverage that contains caffeine. Research how much caffeine is in each type of drink you consumed. Calculate the amount of caffeine in your body when you went to bed that night. Compare your results with your classmates. Use your calculations and the results of others to make a conjecture about the time of day you should consume your last caffeinated beverage if you want to have no caffeine in your body when you go to sleep? (CORD Algebra 2: Learning in Context, 2008.) Which Function? - F.IF.8a http://www.illustrativemathematics.org/illustrations/640 This activity is a nice analysis that involves a real understanding of what the equation of a translated parabola looks like.

References:

- 1. National Governors Association Center for Best Practices, Council of Chief State School Officers. (2010). *Common Core State Standards (Mathematics)*. Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers.
- 2. McCallum, W., Zimba, J., Daro, P. (2011, December 26 Draft). *Progressions for the Common Core State Standards in Mathematics*. Cathy Kessel (Ed.). Retrieved from http://ime.math.arizona.edu/progressions/#committee.
- 3. Engage NY. (2012). New York Common Core Mathematics Curriculum. Retrieved from http://www.engageny.org/resource/high-school-algebra-i.
- 4. Mathematics Assessment Resource Service, University of Nottingham. (2007 2012). Mathematics Assessment Project. Retrieved from http://map.mathshell.org/materials/index.php.
- 5. Smarter Balanced Assessment Consortium. (2012). Smarter Balanced Assessments. Retrieved from http://www.smarterbalanced.org/.
- 6. Partnership for Assessment of Readiness for College and Career. (2012). PARCC Assessments. Retrieved from http://www.parcconline.org/parcc-assessment.
- 7. California Department of Education. (2013). Draft Mathematics Framework Chapters. Retrieved from <u>http://www.cde.ca.gov/be/cc/cd/draftmathfwchapters.asp</u>.
- 8. National Council of Teachers of Mathematics (NCTM) Illuminations. (2013). Retrieved from http://illuminations.nctm.org/Weblinks.aspx.
- 9. The University of Arizona. (2011-12). Progressions Documents for the Common Core Math Standards. Retrieved from http://ime.math.arizona.edu/progressions.